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ABSTRACT 
 
In this article, investigations into the nonlinear 
asymmetric vibrations of a pressure sensor 
diaphragm under initial tension are presented. A 
comprehensive mechanics model based on a plate 
with in-plane tension is presented and the effect of 
cubic nonlinearity is studied on the nonlinear 
asymmetric response when the excitation 
frequency is close to the natural frequency of an 
asymmetric mode of the plate. The obtained results 
show that in the presence of an internal resonance, 
depending on the initial tension, the response can 
have not only the form of a standing wave but also 
the form of a traveling wave. The results of this 
work should be relevant to diaphragm-type 
structures used in micro-scale sensors including 
pressure sensors. 
 
1. INTRODUCTION 
 
   Thin film diaphragm structures are frequently 
used in silicon piezoresistive sensors, capacitive 
sensors, and fiber-optic sensors [1]-[3].  One can 
detect the vibrations of these diaphragm structures 
through the displacements of the diaphragm 
structures. The sensor sensitivity, bandwidth, and 
linearity are directly related to the structural 
behavior of the diaphragm. Due to thermal 
expansion and mismatch between adjacent wafers, 
the wafer-bonding operations may introduce 
in-plane residual stresses in the thin film 

diaphragm structures. In a typical silicon pressure 
sensor, the diaphragm is a stretched thin structure 
and the initial tension can be as large as 1 GPa [4]. 
The diaphragm vibrations are usually analyzed by 
using membrane equations. Static membrane 
equations have also been used in other sensor 
designs [1]-[3].  However, as pointed out in the 
recent work of Yu and Balachandran [5], a 
membrane model is not always the most 
appropriate one. Sheplak and Dugundji [6] carried 
out static analysis of a clamped circular plate 
under initial tension and studied the transition 
range from plate behavior to membrane behavior 
in terms of the tension parameter k. Su, Chen, 
Roberts, and Spearing. [7] extended this work to 
analyze large deflections of a pre-tensioned 
annular plate bonded with a rigid boss under 
axisymmetric pressure in the presence of  
in-plane loading. In the work of Yu, Long, and 
Balachandran, the work presented in [5] is 
extended to the dynamic case and the tradeoffs 
between sensitivity, bandwidth, and dynamic range 
are addressed through a nonlinear analysis.   

In most of early research efforts on the dynamic 
response of a diaphragm structure, harmonic and 
symmetric excitations are considered. For studying 
asymmetric responses, Sridhar, Mook, and Nayfeh 
[9] derived a general solvability condition for 
nonlinear interactions in the vibrations of a 
clamped circular plate. Yeo and Lee [10] 
re-examined a primary resonance state studied by 
Sridhar et al. and corrected the modulation 
equations derived by Sridhar et al. The results 



indicate the steady-state response can have not 
only the form of a standing wave but also the form 
of a traveling wave. In this paper, the authors 
follow the work presented in references [9-11] and 
build on their earlier efforts [5, 8], and carry out a 
nonlinear analysis of the asymmetric vibrations of 
a pressure sensor diaphragm under initial tension.  

The rest of this article is organized as follows. In 
the second section, the model of a plate with 
in-plane tension is provided. In the third section, 
the equations governing the nonlinear asymmetric 
vibrations are derived when the system 
experiences a primary resonance excitation of the 
one-one mode. Numerical results for three 
different diaphragm structures are presented in the 
fourth section. Finally, some remarks are collected 
together and presented.  
 
2. MODEL DEVELOPMENT AND SYSTEM 
EQUATIONS 
 
In Figure 1, a clamped, circular diaphragm of radius 
of a and thickness h is illustrated.  The Young’s 
modulus of elasticity and Poisson’s ratio of the 
diaphragm material are denoted by E and v, 
respectively. The initial tension per unit length 
applied to the diaphragm is represented by N0.  
 

  

 
Figure 1:  Illustration of a diaphragm clamped 

along its edge. 
A non-dimensional tension parameter k is 

defined as 
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where the constant D = Eh3/(12(1- v2 )) and 
0 /T N h=  is the tension per unit area.   In the 

analysis that follows, it is shown the choice of a 
plate model or a membrane model actually depends 
on the tension parameter k, not on just the initial 
tension per unit length N0 applied to the diaphragm. 
Starting from Love’s equations (Soedel [12], 
Nayfeh and Mook [13]), including damping, axial 
in-plane force per unit length Nr, and the transverse 
loading per unit area f(r,θ; t), the nonlinear 
partial-differential equation governing a plate with 
initial tension can be obtained  
as
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where r is the radial distance from the center, θ  is 
the angular coordinate, w(r,θ; t) is the transverse 
displacement, and μ is the damping coefficient.  

    For convenience, the authors rewrite these 
equations in terms of nondimensional variables, 
denoted by asterisks, which are defined as follows: 
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After substituting Eq. (3) into (1) and (2) and 
dropping the asterisks in the result, one can 
obtain 
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The relationships amongst Φ , w  and the 
in-plane displacements andu v are given by 
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The clamped immovable boundary is described by 
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Making use of equations (8-14), one can obtain the 
following two conditions on Φ : 
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3. NONLINEAR INTERACTIONS: COUPLED 
OSCILLATOR EQUATIONS 
 
Consider a primary resonance excitation of the 
n-1th mode having the form 
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and let the displacement response be approximated 
as 
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The coefficient α11 and β11 are determined by 
characteristic equations  
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On substituting Eq. (18) into Eq. (5), the result is 
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The solution of equation (20) that satisfies the 
boundary conditions can be 
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where 1ψ  and 2ψ  can be expanded in term of 
the eigenfunctions of 
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The solution of equation (23a), which is bounded 
at the origin, can be expressed as 
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Imposing the boundary conditions (23b-c) leads 
to 
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For 1ψ , 0n = , and in this case, 1n =  for 

2ψ . One can determine λ  and 2 1c c  by 
using equations (27a, b).  Then, one has 
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After substituting Eqs. (18) and (22) into Eq. (4), multiplying the outcome with ( ) cosr rφ θ  and 
( )sinr rφ θ ,  respectively, and integrating the results from 0θ = to 2θ π= and 0r = to 1r = , one can 

obtain the coupled oscillator equations
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4. NUMERICAL RESULTS 
 

As a representative case, a Mylar diaphragm with 
the Young’s modulus of elasticity E = 3.45 x 109 



Pa, density ρ = 1.29 x 103 kg/m3, and Poisson’s 
ratio υ =0.41 is considered. For a diaphragm 
radius of 1.75 mm and thickness values of 40 μm. 
30 μm, and 20 μm, the dependence of the 1-1 
mode natural frequency on the tension parameter 
k is shown for each of these cases in Figure 2. The 
natural frequencies increase as the tension 
parameter k is increased. It is noted that it is 
possible to get the same 1-1 mode natural 
frequency (22.87 kHz) as that for a diaphragm 
with h=40 μm and k=0 by choosing the 
appropriate tension parameters. As pointed out in 
Figure 2, the tension parameter values are k=4.6 
and k=9.12, for h=30 μm and h=20 μm, 

respectively. The structural and system 
parameters for the previously mentioned 
diaphragm structures are provided in Table 1. 
 
Table 1: Structural system parameters and 
characteristics 

Cases h 
(μm) 

a 
(mm) 

k f11 
(Hz) 

a1 

1 40 1.75 0 22875 198.9 

2 30 1.75 4.6 22875 194.3 

3 20 1.75 9.12 22875 177.2 
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 Figure. 2. Variation of the natural frequency 
with respect to the tension parameter for 
diaphragm structures with different thickness 
values, …… for h=40 µm, ------ for h=30 µm，
and  ── for h=20 µm. 
 

In Figure 3, the frequency response curves 
obtained by using AUTO97 [14] are presented 
to illustrate the response of structure 
corresponding to case 1 of Table 1. The 
corresponding mode has one nodal diameter 
and no other nodal circle except the one at the 
boundary. In Figure 3, the branches labeled SS, 
ST, US, and UT correspond to the stable 
standing wave, stable traveling wave, unstable 
standing wave, and unstable traveling wave, 
respectively. The stable branches and unstable 
branches are denoted by solid lines and dashed 
lines, respectively.  From Figures 4 and 5, 
one can find the response of diaphragm 
transform from a standing wave into a 
traveling wave with the increase of excitation 
frequency. The bifurcation point is located at 
(22975Hz, 3.43×10-6m). As the excitation 
frequency increases, there is one unstable  
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Figure 3. Variations of the diaphragm response 
amplitudes with respect to the excitation 
frequency for Case 1 with k=0 and pressure 
p=100pa, ----- unstable branch, ── stable 
branch. 

 
standing wave branch and one stable traveling 
wave branch in the frequency range  
(22975Hz, 23264Hz). Following that, the 
response of diaphragm becomes complicated 
and there are multiple unstable branches and 
multiple stable branches in the frequency 
range (23265Hz, 24312Hz). When the 



excitation frequency reaches 24313Hz, there is 
one stable standing wave branch and multiple 
unstable branches.   

 
In order to show the deflection of the diaphragm, 
the responses observed at excitation frequencies 
of 22500Hz and 23000Hz are considered. The 
corresponding results obtained by time domain 
simulations are presented in Figure 4 and 5 to 

illustrate the stable responses of the diaphragm 
over one period of excitation. A standing wave is 
shown in Figure 4, where one can observe a 
nodal line in each subplot. In Figure 5, a 
clockwise rotating traveling wave is shown. The 
responses shown in Figures 4 and 5 correspond 
to a primary resonance excitation.  
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Figure 4. Deflections of the diaphragm in Case 1 over one period of excitation when 2 22500HzπΩ =  
and p=100Pa.  
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Figure 5. Deflections of the diaphragm in Case 1 over one period of excitation when 2 23000HzπΩ =   
and p=100Pa.  

To look into the initial-tension effects on the 
response of diaphragm, the frequency-response 
curves obtained for Cases 2 and 3 of Table 1 are 
presented in Figure 6 and 7. Comparing Figure 6 
and 7 with Figure 3, one can find that the 
branches SS, ST, US, and UT are similar to those 
of Figure 3. The differences are in the locations 
of the bifurcation points. In Cases 2 and 3, the 
first bifurcation points are located at (22998Hz, 
3.82×10-6m) and (23024Hz, 4.52×10-6m), 
respectively, as the excitation frequency is 
increased. One unstable standing wave branch 
and one stable traveling wave branch are located 
in the frequency ranges (23000Hz, 23352Hz) and 
(20325Hz, 23482Hz) in Cases 2 and 3, 
respectively. 
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Figure 6. Variations of the diaphragm response 



amplitudes with respect to the excitation 
frequency for Case 2 with k=4.6 and pressure 
p=100pa, ----- unstable, ── stable branch. 
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Figure 7. Variations of the diaphragm response 
amplitudes with respect to the excitation 
frequency for Case 3 with k=9.12 and pressure 
p=100pa, ----- unstable branch, ── stable 
branch,  
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Figure 8. Variations of the diaphragm response 
amplitudes with respect to the excitation pressure 
for Case 3 with k=9.12 and 23.5Ω = kHz, -----, 
unstable branch, ── stable branch. 
 
To investigate nonlinear interactions with respect 
to the excitation pressure level, the response 
curves obtained in Case 3 are shown in Figure 8 
when the excitation frequency is close to the 1-1 
mode natural frequency. From this figure, one 
can find that stable standing waves occur in the 
“small” range (0, 20 Pa). With increase of 
excitation pressure, the responses of diaphragm 
become complicated and there are multiple 
stable branches and multiple unstable branches 
in the range (20 Pa, 100 Pa). 

 
 
4．CLOSURE 
 
In this effort, the nonlinear asymmetric vibrations 
of a pressure sensor diaphragm under initial tension 
are investigated. A comprehensive mechanics 
model based on a plate with in-plane tension is 
presented and the effect of cubic nonlinearity is 
studied on the nonlinear asymmetric response 
when the excitation frequency is close to the natural 
frequency of an asymmetric mode of the plate. The 

obtained results show that in the presence of an 
internal resonance, the bifurcation locations 
depending on the initial tension. The response can 
have not only the form of a standing wave but also 
the form of a traveling wave.  
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